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.‘This paper presents a method for functional testing of microprocessors.
First, we develop 2 control fault model at the RTL (Register Transfer Languagze)
level. 3Based on this model, we establish testing requirements for control
faults. We presunt three test procedures to verify the write and read sequences
and use the write and read sequences to test other instructions in a2 micro-
processor. By utilizing k-out-cf-m codes, we can use fewer tests tc cover

more faults, thercby reducing the test generation tire.
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I. INTRODUCTION

The developrent of integrated circuit techneclogy hes resulted in a wide
range of applications for microprocessors. Testing cf ricroprocessors is a
difficult probler teczuse of the complexities of nicroprocessors. The problen
is morc serious fer users due to lack of information on internal implementation
of microprocessor. and other VILSI chips. Over the past few years, several
methods have been proposed to solve this protlem. Thesc testing techniques
are essentially based on functional level [1-11],

A micreoprocessor is a type of corplex sequenticl rachine, The current
approach is to test microprocescors by instruction execution. Gererelly,
before executing an irstruction-~under-test we have to write certain data
into some registers, and after executing the instruction, read the contents
of the registers. Therefore, if the write or the read instruction is fzulty,
we may not be able to test the instruction-under-tect., To solve this problen,
Thatte and Abraham [3] have to label instructions and define test order in
detail before testing. However, they do not consider the partiazl execution
of an instruction. So for inmstruction decoding fault Ij/I + Ik’ it is assumed

3

that instead of executing Ij’ both instructions Ij and Ik are executed to
completion. It is more general and practical to consider partial execution of
en instruction under fzult, Our fault model allows this,

Abrahan and Parker [6] proposed a simplified fault model. First, one

tests all internal registers, then executes all instruction and data manipulatien

functions.

In this paper, ve consider the basic instructions for the write and read

.

register functions as the kernel of a microprocessor. This kernel can be represented

by a sequential machire. Based on the fault model, we use checlking experiment
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to verify the kernel. Then we use the kernel for testing other instructiors,
The control fault model is established at the Register Transfer Language (RTL)
level, since it is convenient to represent the instruction deccding faults and
other control faults at such a level,

Section 1T presents a fault model for microprocessors,‘emphasizing the
control fault model defined a2t the RTL level instead of the instruction level.
In Section III, after examining most existing off-the-shelf microprocessors,
we derive testing requirerents based on different types of operations. 1In
Section IV, we define the write arnd read sequences as the kernel of & ricre-
processor, Then Section V prcsents the verification of the write and read

sequences., Section VI discusses the testing of control faults. Finally,

conclusions are given in Secticn VII.




I1. FAULT MODLL
The functions of a microprocessor are mainly perforred by instruction
execution. The sequence of operations for an instruction can be described
by RIL. We consider that an instruvction consists of a series of RTL
statenments. The typical statement is defined as

(conditicns): D«f (Sl, 82, ooy Si’ ces)

vhere
D - destination

S:l - Source

f(S ss ey S 9 .0.) - Operaticn

S
1’ V2 i
Destinations and sources may be internal registers of a microprocessor
or external to the microprocessor (i.e.,, data bus, address bus, etc.). Ve are
only concerned with those internsl registers vhich are cf interest to users, so

we do not consider implied registers such as buffers. Fer example, datz transfer

from memory to memory cen be described as Dnj«nn » instead of Buffer+Dl, followcd

i

by DBj+Buffer, vhere DD denotes the data bus which represents data irfut or output

i

of memory, i,j denote different bus cycles, DBi (read from rmemory) is zhead of
DBj (write into memory).

After examining most existing off-the-shelf microprocessors, e.g. Intel 8(Ge0
and 8086, Zilog 80 and 8000, Motorola 6800 and €8000, the RTL~like operations
can be divided into twe classes, transfer operations (class T, De¢S), and
arithrmetic and logical operations (class A). Class A can be subdivided into

six subclasses based on the combination of destinctions and sources as shown in

Table 1, where the content of flag bite constitute a status register.

|
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Class

Typce of Expression

Operatien

Al

D<£f (D)

EIT SET

BIT RESET

BIT COMPLEMEUT
INCREMERT
DECREMENRT
DECIMAL ADJUST
SHIFT

ROTATE
COMPLEYENT
KEGATE

CLEAR

A2

D«£f(D,S)

ADDITIOKN

ADDITION VITH CARRY
SUBTRACT1ON
SUBTRACTIOR VITH BORRCW
AND

OR

XOR

D<«f(S)

EXTEND SIGN

A3

Def (81,82)

ADDITION, D<S 1+S ?

D<f (D’SI’SZ)

ADDITION, DeDHS +S,

A4

D+f(Sl,52,S3)

ADDITICN, D<5,+S +S3

D1,D24-f (Dl’ s)

1 72
MULTIPLY
DIVIDE

Flags+f (S)

BIT TEST

Flags+f(sl,82)

COMPARE

Flags+f(Sl,82,...)

Modifying flags for all

arithmetic and logical instructions |

—_—

Table 1., KTL-Like Operations




Note that the ccntrol operations in RTL control statements such ac
conditional branch are not listed becausc we can use RTL assignment statererts
with conditions and expand the RLT description for instructions with locps,.

A microprocessor usually can be divided into two sections: the data
processing part and the control part [2,11]. 1In this paper, we consider faults
in both parts with the emphasis cn the control faults,

A, Data processire faults

(1) Data sitorage fault (R)/(R)!'

This means that the content of register is changed frorn (R) to (R)' due
to faults csuch as stuck-at and pattern sencitive faults.

(2) Data trznsfer fault <«/<«!

The fault occurs in the transfer path betwecn the sources and the
destination. This tyre of fauit includes stuck-at, bridging and pattern sensitive
faults,

(3) Data manipulation fault (£)/(f)*

This is the operation execution fault. Under this fault, the operation
b 1s.executed, but the result of operarion is wrong.

B. Control faults

This kind of fault involves register decoding faults, instruction dececding
faults and other control faults. A register decoding fault means missing or
changing the selected register, or selection of an extra register, denoted by
R/é, R/R', and R/R*R' respectively. For instruction decoding faults, we
congsider that an instructior can be executed partially. It means missing or
changing the selected operation, or selectiorn of an extra operation in RTL.

In this case, the instruction cdecoding fault may be Ij/¢, Ij/AIj, Ij/AIk,

1./1,, I,/A1 41, 1,/1 +A1 , 1./1.41 , end so forth, where Al means part of
b I o R R S A B SO R §

instruction I,
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In fact, for wost existing off-the-shelf microrrocecsors, the register deccding
faults can be considered as in:struction decoding faults, i.e. R/¢c1j/¢.

R/R'clj/Ik, R/R+R'c1j/1j+1k, vhere I,, 1

j ). Are transfer instructions ameng
registers. For example, let Ij be Rj*mcmory, Ik be Rk*nenory, then fault
Rj/Rk efault Ij/Ik' In addition, the control faults also include instruction
execution sequence faulte, condition faults and so cn.

From the above observation, we assert that it is appropriate to represent
the control faults at the RTL level. Therefore, we will define the above
control faults at such a level, Let f denote D+f(Sl,Sz,...), vhich is an operction
on the instruction~under-test, &rd fe{f}, where {f} is the set of RTL operations
of a microprocessor. Let f' denote D'<f'(S!,S!,...), which is an unexpected
(faulty) operation, and £'e{f}.

Ve ncw define thrce clazses (i.e. nine subclesses Fl, F2, ..., T9) of
control faults as follows:

(1) f/¢- No creration is executed.

Fl1. f/¢

(2) f/f' - Instead of performing the operaticn f, ancther operation f' is
exectuted, It contains two subclasses of faults,

F2, ¢£f/f': Fere ¢ means that the destination registers D and D' are
different and the fsult is f/f',
F3, of/f': o denotes that registers D and D' are the sare.

(3) f£/f+f' - In addition to operation f, another operation f' is also

executed, It can be subdivided as follcws.

(3a) Register D and D' are different.

F4, 8£f/f4f': The source register list of f and f' does not include

D' and D resrectively. We are not concerned with the execution order
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: F5. C&f/f'f: The source register list of f includes D'. f£' 1s executed

»}‘_E before performirg operation £; i.e. the execution order is

e L. D'<f' (s, §3,...)

‘;“ 2. D*'f (81'32’...’1)'*)

::Z:; where register without * denctes its content befcecre executing the operzticn,

e

: regicter with * denotes its content after executing the operation.

- Fé. 6f/ff': The source register list of f' includes D and the execution
J

i .

:k order is

[ne

'}: 1. D«f (81,82,...)

- 2. D'f' (5],S),.00sD%)

.::;: (3b) Registers D and D' are the same, i.e. D'=D. Vhen the source register

~ 11st ¢f £ and f' does nct include D' and D respeciively, if the executicn order
5 is f'f, the fault dces not affect the execution of f, If the execution order is
-

o f £', it 1s the same as the case with the fault cf/f',

=

- F7. of/f'f: The source register list of f includes D, and the execution
¥

o3 order is

s

_.‘.. 1. D"f. (S"Sé,.‘n)

“J: 2. D"f (S]_'SZ’...’D*)

-;.‘ F8. of/ff': The source register list of f' includes D and the execution

2

SN order is

..-‘ 1. D“f (Sl’sz’...)

«§ 2. Def' (51,8%,...,D%)

: F9., ¢f/fLf': Both f und f' are executed a2t the saume tine.

*‘;

" 1)"f (51,52,...)

::_: D! (S',Si,..-)

.* wvhere I denotes logical AND or OR function. In this case, the final content of
“ the destinaticn D is the resvlt of the cnrposite value (i.e. the result of the
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AND or OR function) of f and £°,

. Note that the above control faults can occur at any place in an instructior
execution sequence., This control fault modcl can cover register deceding faul:s,
instruction decoding faults (including partizlly irstruction executicn),
instruction executicn sequence faults, e¢tc., since any control fault cen aluays

be defired as missing, chaaging, or extra PTL opeations and will ceouse registers

to have vrorng contents.
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IYI. REQUIRENTN1S FOR TESTIKG CORTLOL FAULTS

Our purpose is tc test the executicn of microprocessor instructionc,
Therefore, the objective of test pattern generation ic to find the Initicl
data in registers (test data) nceded for testing functiorns of an instructior
and also the sequence of imstructions. This test data must satisfy certain
requirencnts. From the contrel fault medel given in Section TI, we can obtain
verious requirements for testing ccntrol faults.

Let us establist the following notation. For a fault-free operatien f,
we have

Vi = tke value cf register 2.

VSi = the value of the operand in source regicter Si.

VD = the value of the operand in destinaticn register D,

VD* = the value of destinavion register D storing the result of

cperaticn f.

For a faulty cperation f', we obtain VS&, VL' and VD'* instead.
Theorer 1, Control faults T/¢, T/T' and T/I+T' can be detected if the data
values of registers satisfy the following recuirericnts:

QTT1. ¥, ¢ Vi 1 73

G3T2. ¥, LV, F Vs 14

Proof. We shall prove this theorcm by considering the nine fault cleseses
defined In Section II.

(1) For fault F1 (T/¢) and F2 (8T/T'), in order to verify trznsfer
operation T, one needs VS ¥ VD.

(11) TFor fault F2 (0T/T'), the results of T and T' should be different,
i.e. VD* # VD'*, To cbtain this result, we rwst have VS ¥ VS',

(111) For fault F& (ST/T+T') and F5 (8T/T'T), we need only to detect the

extra operation T'. Therefore, VSE' ¢ VD',




(1v) Tzult F& (ET/TT') means that transfer oreration D<S is perfermed

first, then D'«D*, 1In order to dctect the extrc operztion T', one needs

vs # vn'.

(v) Teclt F7 (cT/T'T) yields IS' follovcd by D«Dv, Therefore, ve obtein
the requirerznt VS' # VD.
(vi) For {fault F& (O0T/TT'), we have D<€, then D+D*, This fault coes nct
affect operzticn T. 1In order to verify T, we nced VS ¥ VD,
The above six requirements belong to (TT1,
(vii) Tor fault F¢ (CT/TLT'), the composite value of both results eof T and
T! should be éifferent fror the correct result of T. i.e. VELV3' ¢ VS vhich
belongs to QTT2.
0.E.D.,
Theorem 2. Control faults T/A' end T/T+A' can be detected if the datz values
of registers sztisfy the folloving rcquirements:

QTAl. Vi § vj s, 1473

QTA2, f; ¥ VS

© QTA3. £1 ¢ VD!

QTA4. VSLE, # VS

where fA is tre result of operaticn of class 4, i.e. fA = f} (vs!, vs!,...).
3 ~

Proof, Tre proof is similar te thc prcof for Theorem 1. Since A' instead

A
(v) and (vii) in the Proof  for Theorer 1 to obtain the corresponding

of T' is perfcrred, ve can change VS' to f! in the requirements, (ii), (iii),

requirerents for Thecren 2.
(1) For F2 (6T/A'), VS # VD, (QTAl).

(11) For F3 (oT/A'), VS ¥ £', (QTA2).
(111) Fer F& (8T/1+A') and F5 (8T/A'T), fA # VD', (QTAS).

(i1v) TFor ¥6 (8T/IA'), it means that D«S first, then D'+fA (S',Sé,....D*).

NP P S U L R YT W I PR




54 bk dbinhbatiinelindediandbtnib ikl A Ak AL A A A S e e AL AR R A% SUa 00, A 0Fy i el “Slle e ke Al IeP R e A

1]

. 4o

2 . - R I o
P g ok | r '-x'-’.'r'"l‘«
. ‘% ‘v il MR RS

We need IA (vel,vs! ,...,VS) # VD', Since VS can be selected as any initizl
data valuc, 1t can be considcred as one of szeveral source operands. Therefore,

ve can reurite tA (VSi, VS% seeosVS) ¥ VD' as fA # VD', (QTA3).

(v) For I7 (cT/A'T), fA i VL', (QTA3).
(vi) For F8 (c1/TL'), it implies D5 followed by D*fA (S',Sé seseyDE),
This reguires VS # f; (vs',vs',...,VS). Here VS can be considered as a
destinzticn operand VD', Seo we rewrite the incquality as VD' ¢ f', (QTA3),
(vii) For Fa9 (0T/TLA'), VSLfA = VS, (QTA4), . Q.E.D,
Thecrer 3. Control faults A/d, A/T' and A/A+T' can be detected if the data
valued of registers satisfy the following inequalities.
QrT1. £, # VD
orT2, £, ¢ VS
QLI3. V, ¥ vj > 1 #3
QaT4. £, # VD'
QATS. fA (Vs') # fA(VD)

. , 7s' L
'Q[.TG. fAI V ¥ fA

where fA = fA l,VSZ,...,VD), fA(VS') =

ot
fA (‘731, VSZ,...,\S )o

(vsl,vsz,...), fA(VD) = fA(VS

Procf. Since arithmatical and logical operations insteed of transfer

operations are considered here, we can change VS to f, in the cases (i), (ii),

A
(iv), (vi) ané (vii) of Theorem 1.

(1) For Fl end F2, fA # VD, (QAT1).

(11) TFor F3, f, ¥ Vs', (QAT2).
(111) For ¥4 and ¥5, VS' # VD', (QAT3).
(iv) For F6, FA ¥ VD', (QAT4).
(v) F7 (oA/T'A) means that DeS' followed by D+£A(Sl.82,...,b*) which yields

fA(VSI, VSz,...,VS'). When there 1is no fault, fA(VSl’ VSZ,...,VD) is obtained.

........
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Thus the condition for detecting this fault is fA(vsl’ VSZ,...,VS')

# fA(vsl,vsz,....VD). (QTAS).

(vi) For F8, fA ¥ VD, (QTAl).

(vii) For F9, fA L vs' ¢ fA. (QTA6) . Q.E.D,

Theorem 4., Control faults A/A' and A/A+A' can be detected if the data values of

registers satisfy the following inequalities.
QAAl. £, # VD
]
QAA2. £, # £
QAA3. £} # VD'
] |
QaA4, fA(fA) #.VD
L
QAAS, fA (fA) # fA(vn)
|
Qar6. £} (£,) # £,
£ L s

Qua7. £, L £, ¢ £,

' = f ) Q! 1y — ]
vhere £1(f,) = £1(VS], VS},...,f,), £,(£7) = £,(VS,,VS ..o, f')).

Proof. For the same reason, we ray change VS to fA’ and VS' to fA for
cases (i) to (i1i) and (vii) in Theorem 1 to obtain QAAl to CQAA3 and QAA7
respectively. In addition, since the results of A and A' nay affect each other,
we can obtain QAA4 to QAA6. Q.E.D.

Note that for requirenent QAA7, if operation f, and fA of class A are

A
ekecuted in the sane unit (e.g. ALU), then both results of fA and fA can no

lornger be considered as cbtained separately. Instead, QAA7 rmay be considered

as a data ranipulation fault (fA)/(fA)"




IV. VWRITE AND READ SEQUENCES

As a nicroprocessor is one type of scquential machine and all internal
registers are memory elements of the sequential machine, the content of registers
represents the state of the sequential machine. Therefore, the following
procedure 1s utilized for testing microprocessors.

1. Irpitialization of state of registers.

2. Execution of the instruction-under-test,

3. Pead the state of registers,

In fact, Steps 1 and 3 consist of write and read register sequences respectively.
Obviously, if we can guarantee the correctness of Steps 1 and 3 first, then
the testing problem will be simplified,

The testing approach used here is a kind of open loop testing [6]. It

implies the use of a test equiprent which provides the stimuli to the micro-

processor and observes the responses from the microprocessor,

Now let us discuss write and read sequences which are used for writing
end reading the register states of a rmicroprocessor. They consist of several
basic instructions, called the kernel of microprocessor. These instructions
of the kernel can be carried out by a sequential machine, therefore, we can
use a checking experiment to verify the kernel.

A. The kernel of microprocessor

Definition 1. Kernel instruction set - A small subset of instructions of a

ricroprocessor which can be used for constituting the write and read register
sequences.,

Definition 2. Register set - All internal registers of a microprocessor from the

view of the architecture or prograrming.

Definition 3. Kernel state -~ The register state, i.e. certain set of data values

of the regicters.
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Definition 4. Kernel input - The write sequcrce for writing a set of data into

the registers, or the read sequence for reading cut the contents of the registers.

Definition 5. Kernel output -~ The set of data values of the registers which are

read out by the read sequence.

B. Kernel instruction set

There exists rany choices for the kermel instruction set, In order to
keep the kerrel srzll, the following requirerents should be satisfied,

1. The rumber of imstructions in the kernel instruction set should be
small,

2. Functions of each kernel instruction should be as simple as possible.
For instance, a kernel instruction contains rainly transfer type of operationms,
or swall nucber of RTL operationms.

3. In crder to simplify addressing, the priority order of choosing the
addressing mode of an instruction is as follows,

. For vrite register Instructions: Irrediate, Direct, Indirect.

. FTor read register instructions: Direct, Indirect.

For the existing cff-the-shelf microprocessors, most registers can be
written into or read froro directly., These registers are called direct access
registers. Others are indirect access registers which can be accessed through
the direct access registers in certain order by using transfer instruction
;nong registers,

C. Ferrel state

In order to sirplify the testing, during the checking experiment, we only
use a few states for the good karnel, 1.e. we define several sets of data value
for the registers. Therefore, we should choose the data values (test data)

such that they can cover as rany faults as possible,




V. VERIFYING WRITE AND READ SEQUENCES

We use the checking experiment to verify the kernel of & microprocessor,

The main task is to decide how mzny states of the kernel and vhat test data we
use,

Abrzhar and Parker [6] use the li-out-of-m codes for their "register read
test" procedure, where m is the width of a code word (i.e. the length of register),
and k is the number of 1's in the code word. &4s ve will see, this type of code
is powerful since it can be used as test data to cover most control faults by
using fewer data, We will use the k-out-of-r codes for verifying the write
and read sequences as well as for testing control faults, The k-out-of-m codes
can also detect stuck=at type faults, but do not guarantee to cover all data
processing faults.

To sirplify the testing, we shall only use transfer operations of the kernel
instructions in write and read sequences, Therefore, we only need to consider

the requirerents of Theorems 1 zard 2,

A, QTT1, QTAl and QTT2

The k-out-of-m codes used as test data can saticsfy requirements QTTI,
QTAl and QIT2 (Vi ¢ Vj and Vi L Vj # Vi). This is because in k-out-of-m
codes, a2ll code words are distinct and the AXD(OR) operation of any two code
words will reduce (increzse) the nurber of 1's in the code word, thereby
different from both original code wverds.
B, QTA2
During the checking ecxperirent for the kernel, there exists an input leaving

the kernel state unchanged. Therefore, transfer operation (in write sequence)

D«S implies VD = VS, then the reguirercnt QTA2, IA ¢ VS, becores fA # \D. This

is for detecting fault oT/A', here D 2nd D' are the sare register. Therefore,
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QTA2 is changed to f; ¥ VD' which belongs to QTA3.
c. QA3

The requirement QTA3, fA(VS',VS',...) # VD', is for detecting an extra
operation., We list the restrictions of operands (test data) for detecting

operation of class A in Table 2.

Extra Operations Restrictions of Operands
BIT SET @
BIT RESET @
BIT COMPLEMENT No
INCREMENT Yo
DECREVENT Yo
DECINMAL ADJUST ©)
SHIFT # 0 (all 0s), 1 (all 1s)
ROTATE 0,1
COMPLEMENT No
KEGATE No
CLEAR 0
ADDITION £0
ADDITION WITH CARRY £0, -1
SUBTRACTION 0
SUBTFACTION WITH BORROW 0, -1
AND k-out-of-m codes
OR k-out-of-n codes
XOR k-out-cf-r codes
. EXTLYD SIGN 0,1
ADPITION, D.<.S1 + S2 the least significant bit LSE =1
ADDITION, D«D + 8, + 8, # 0; vsi + vsé #0
AUDITION, DeS; + 5, + S, ®
MULTIPLY £ 0,
DIVIDE {0,
BIT TEST )
COMPARE )
Yodifying flags ®

Table 2, Restrictions of operands for detecting faulty
arithreetic or logical operations
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() If ve use two tests in which the source operands are corplements of
each other, then one of the tests can detect the faulty operation.

(@ These operations only set or reset the flags. Ve use two tests with
thke identical source cperands and two sets of flags which are complements to each
other. The faulty will change one of the flags.

(® The execution of DECIMAL ADJUST (to add certain values) depends on the
value of source operand and the flags. We can use either method in case 1
or either method in case 2 to detect the operation,

C) Operation D*-S1 + S2 + S3 is only used for memory address addition.
Here D neans external address bus, In this case, the unexpected operation
does not affect the write and read registers. Hence it needs not to be
considered for verifying the kernel,

C) During the checking experiment for the kernel, if ve have considered
the main operations in arithmetic and logical instructions as the unexpected
operation, then we need not consider modifying flags which are auxiliary
operations,

For other operations, the restrictions are obvious, For example,
ADDITION WITH CARRY, D'<D' + S' + CARRY , if CARRY = 0 with the restriction
VS' # 0 or CARRY' = 1 with the restriction is VS' ¥ -1, then VD'* # VD',

Since we use k-out-of-m codes as operands, these restrictions can be satisfied.

For operation D'«D' + Si + Sé » since the negative value of any k-out-of-m

code word will not be any k-out-of-mw code, i.e. VSi + VSé # 0; so VD' + VSi + VSE

# VD', For operation D'*Si + Sé, we can divide the k-out-of-m cedes into two

groups with different LSB (Least Significant Bit), These two groups corplerment

each other, The group with the restriction LSB = 1 will be used for testing.




For operation ROTATE, the restriction is for the case of the odd number of

shifted bits, Otherwise, we need otherrestriction (e.g. using subset of
k~out~of-r codes as operands).
D. QTA4

The checking experiment does not guarantee requirement QTA4, VS L FA ¥ VS.
For exarple, for the normal transfer operation T, D¢S, with VS = 0101, VD = 0110
(using 2-out-of-4 codes), if there exists a fault OT/TLA' and the extra
operation A' is INCREMENT, DD+l, then f; = VD + 1 = 0111, If L is an AND function,
then VS L fA = VS. Thus QTA4 cannot be satisfied. Therefore, we need another
test procedure to reredy this. The remedy 1s to change the value of S to 1
or 0 dependirg upon L being AND or OR respectively. From the above example,
we see that if L is an AND function, let VS = 1 then QTA4 becomes f; ¥ 1 which
can be satisfied. Sirilarly, if L is an OR function, let VS = 0 and QTA4 changes

?
to fA 7 0.

Now let us check this remedy method for all operations of class A. Note

that we only change the value of S in operation D«S, and D' in operation A' can

be substituted by D.

(1) For class Al, D«fA(D). If ve use k-out-of-r codes, the new
recuirenent QTA4', fA ¥ 1 (0), depending on L, can be satisfied except the

operation CLEAR with L being OR. But in this case, the result of f'

A i1s always

é vhich does not affect the operation D<S,

(i1) Fer class A2, D+fA(D,S'). No matter S' is the same register as S
or not, QTAL' is true except the following case: when S' and S are the same
register, tten for QTA4', fA 1 (fA is operation OR and I is A¥D) and fA $£0
(fA is operation AXND and L is OR) canrnot be met., But in this case, if S' and

€ are the serce, VSLfA is alwvays the sare as VS, the fault does not affect D+S,

i.e. VSL(VD'WS) = VS and VSV(VDAVS) = VS for any operands D and S,

------------
..................
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(1i1) For the EXTEND SIGN operation, D*fA(S'), the result of fA is 0 or 1.
Similarly with case (1), either QTA4 can be met or the fault does not affect
operation T,

(iv) For classes A3 and AF, QTA4 can be satisfied. For the same
reason as QTA3, we need to consider neither modifying flags operation nor
D+51 + S2 + 83.

(v) TFor MULTIPLY and DIVIDE, since the execution period of these operations
generally is longer than that of transfer operations, fault Of /fLf' cannot exist
and we do not consider QTA4,

In sumcary, during the checking experiment we only need three sets of
test data for internal registers., Let n be the nurber of the internal register,

m be the length of registers. Suppose that m is even. Let V denote a cormplete
set of k-out-cf-m code words. Usually, k = %3 IXJ = (m§2) will be the maxinoum
number of distinct codes. We divide them into two groups, !0 and !1 with different

LSB. These two groups are complementary to each other. Note that for most

ricroprocessors, m is even, and l!] > 2n.

Let {a} = {01,02,...,an}, {a} = Ei,E%,...,E;}, {u} and {a} belongs to

20 and !i respectively., We now construct four sets of cata as follows.
Flag register Other registers
. al 02, 03, ses o (ln
5, Sy Ty oo s B
a 0y Ogy eee y O
% @pr O30 ce0 0 Oy

In order to satisfy requirement QTA3, we can choose arnv three sets of data as

the initial values of registers (test data), In fact, cne needs a few rore

data as external bus inputs during testing. Therefore, the final number of code
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words in {a} and {a} is larger than n.

It should be pointed out that the program counter (PC) is easy to test.

We can put a direct addressing branch instruction at the end of a write sequence,
This instruction stores a particular value into PC, then the content of PC is
checked at the beginning of the read sequence by observing the address bus.

Now we will derive the checking sequence for the kernel. As we mentioned
before, we only use three sets of test data for the kernel, namely a, b and c.
First of all, just like a sequential machine we have to obtain a flow table of
the kernel. Ve consider two cases.

Case 1. For a microprocessor without indirect access registers, we obtain

the following flow table.

W W W R

a b c

A @ a @ B @ c @ A,a
B @ a ® B ® c @ 3,
c B a ® B ® c @ c,c

Case 2. Tor a microprocessor with indirect access registers, we obtain

the following table.

v W ¥, R
A @ a @ G c @ ax,a
) B @ A B @ c € B*,b
C ®G a @ B G c ¢} c*,c
A* @ A @ =B @ c @ A*,a*
B# ® a Q = Q c @ B*,b*
Ck ® a @ s @B c @ Cc*,ct
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.
Ai:
i where Wa. Wb, Wc- write sequences for writing a, b and ¢ respectively.
. R - read sequence.
‘i: A, B, C, A*, B*, C* - Kernel states., A, B and C are the states after
r.::'
:{ applying the corresponding write sequences W;, Wb. Wc. A%, B* and C* are the
states after applying read sequence R,
23
5 a, b, ¢, a*, b*, c* ~ Kernel output sequences produced by read sequence R
A
Z; for states A, B, C, A*, B*x, C* respectively.
-2 (D denote the state transition {1,
;ﬁ Since we only use three sets of test data, the number of states of the kernel is
: constant. It means that the above flow tables are independent of micreprocessors,
Therefore, we can easily obtain the checking sequences with the same form.
There are three requirements to derive a checking sequence [12,13].
1, Initialization of the machine (kernel) state using sychronizing
T sequence or homing sequence,
;j 2. Identify all machine states using distinguishing sequence.
;:- 3. Verify each transition using distinguishing sequence.
., For our kernel, there exists sychronizing sequences wé or Wb or Wc and
'i: distinguishing sequence R. Therefore, ve can easily derive checking sequences
o as follows.
ﬁf Checking Sequence 1 (for case 1)
1i: Initialization
- Identify all states
7 4"//
I( W R R Wb R R W R R W R ¥ R W R W R Wb R W R W
2% a_y w b W S wa we ¢ W © W W b W 2
ne @\ (li) ? © ©) @ @ 0] ® ® @
-~ oo
X Verify all state transitions (i.e. next states),
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Checking sequence 2 (for case 2)

Initialization

Identify all states

— i { NN\

W R R R ‘b R R R W R R R W R H R W R W£ R H% R Wa R Wa R

f-*v v vy vvv v N v ",
i?é? (PQP%&@@@ @ @ ¢ © O 6 o

Verify all state transitions (i.e. next states)

J J N J y J \J J \ \J \] J
ka Ea R Wa kb R b b R “b EC R kc kc R “c Wa R ka “c R kc Wb R Wb ka R

[ \y [y o’ [ (] A B A4

@ @ © (E) ©) (K ® @

Finally, we can obtain two test procedures for verifying the write zrnd read
sequences as follows.

Procedure 1: Checking experiment

1. If a micrdprocessor does not have indirect access registers, ve use
checking sequence 1,

2. If a microprocessor has indirect access registers, we use checking
sequence 2.

Procedure 2: Remedy testing

For each of the three sets of regilster values a, b and ¢, do the following
for each register,
1. Initialization of all registers.
2, VUrite 1 or 0 into the given register depending on the circuit
irplerentation,

3. Read the given register.

Therefore, from the previous discussion in this sectien, we obtain the following
theoren,

Theorenr 5. Procedures 1 and 2 can verify write and rcad sequences, zrd after

that the registers of a microprocessor can be initiali-ed to any values.
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VI. TESTING CONTROL FAULTS

During the verification of the correctness of write and read sequences,
we are only concerned with certain trznsfer operations (not all RTL operations)
in the kernel instructions. Therefore, when we test instruct;on decoding and
other control faults, we need to test all instructions included in the kernel,

Procedure 3. Testing instruction decoding and other control faults

Por each imnstruction, do the following steps,
1. 1Initialize register state using any particular initisl values
(test data).

2. Execute the instruction imstruction-under test.

3. Read register state.

Note that we should first try to use three sets of data values a2, b and ¢
at Step 1.

Generally we need several tests for each instruction to detect the
instruction decoding and other control. faults, Obviously, the lower bound
of the nurber of tests using Procedure 3 for each instruction is two. This
is because any kind of microprocessors has several pairs of conditional branch
instructions tased on two different values for the same condition source.
Therefore, when any instruction is under test, in order tc detect an unexpected

branch instruction due to a fault, we need at least two test patternms.

Vo
. .

P,
PR
DA

‘I

The upper bound on the test for each instruction is dependent upon the

v TOTr
.

T
5

microprocessor-under-test. We can roughly estimate the order of tests for

[ ]

s

€ detecting instruction decoding faults. We consider ng instructions to be
S

kﬂ tested, assume that each imstruction corresponds to an operationm, class T or
g

B class A, used for distinguishing instructions from each other. Let nIT and
‘ T

EQ LT denote the number of instructions which have operations class T and
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class A respectively, i.e. n, = Lo, + Bo,e

A. Testing instruction class T

1. The case of Theorem 1

Since for some condition branch instructions, their operations belong to
class T, and they are condition transfer operaticns. In order to detect this
unexpected operation T', two tests, in which test data are complement to each
other, are sufficient.

2., The case of Theorer 2

First of all, we use three sets of initial values a, b and ¢ for covering
the requirements QTAl and QTA3. In order to satisfy QTA2 and QTA4, we can
modify a, b and c separately as new test data. As we have discussed in
Section V, if the imstruction-under-test has a transfer operation D«S, we can
change VS in original data a, b and ¢ to VD, then QTA2 becomes QTA3 which can
be satisfied. Similarly, we can change VS to 1 (or 0) to satisfy QTA4. Here
we need nine tests altogether. Thus, the order of the number of tests for
testing instruction class ¥ ic O(nIT).

B. Testig;rinétruction class A

1. The case of Theorer 3

Test data a, b and ¢ can cover QAT1 and QAT3., Similarly, in order to
satisfy QAT2, QAT4, QATS and QATé, we can modify a, b and ¢ in turn. First,
we change VS' and VD' to VD for covering QAT2 and QAT4 respectivelv. These
changes are done for each register, so it needs 3n tests, where n is the nurber
of registers. Then ve change VS' to a particular value for covering QATS and
QAT6 separately. It needs 6n tests. So the total number of tests for each
instruction in this class will be 9nt+3,

2. The case of Theorem &

We need three tests using a, b and ¢ for covering QAAl and QAA2.
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Then we attenpt to find five particular tests to satisfy QAA3 through QAA7 for
each unexpected operation A'. So the nurber of tests for each instruction in

{

3 -1) = -

< this class will be 3 + 5 (nIA 1) =5 n 2.

w Therefore, the order of the nurber of tests for testing instruction class A

is 0 (n-nlA +'n§A).
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VII, CONCLUSION

In this paper, we presented three test procedurcs to verify the write
and read sequences and to test control faults at the RTL level.

A control fault model is defined at the RTL level instead of the
instruction level. This allows us to model the fault nore accurately,

Based on the control fault modél, we consider the write and read
reglster sequence functions as the kernel of a microprocessor independent of
microprocessors. The similarity between the kernmel of & microprocessor and a
sequential machine allows us to obtain the checking sequences to verify the
kernel. Therefore, testing of microprocessors can be simplified,

We mainly use k-out-of-w codes as test data vhich can cover more control
faults. Therefore, the numrber of test patterns can be reduced.

Further work includes the enumeration of the control faults at the RTL
level for the generation of tests for covering all possible contiol faults

in a microprocessor.

ACKNOWLEDGEMENT

The authors thank Dr. K.K. Saluja for his helpful comments and

suggestions on this paper.

K]
o .« -
e e

2,

1

o —
(]

m; lﬂ"-‘.p J‘I)SJ‘YJ.Q l

3

7‘7‘.

%

L

=




VII, CONCLUSION

In this paper, we presented three test procedurcs to verify the write
and read sequences and to test control faults at the RTL level.

A control fault model is defined at the RTL level instead of the
instruction Iével. This allows us to model the fault more accurately.

Based on the control fault modél, we consider the write and read
register sequence functions as the kernel of a microprocessor independent of
microprocessors. The similarity between the kernel of a microprocessor and a
sequential machine allows us to obtain the checking gequences to verify the
kernel. Therefore, testing of microprocessors can be simplified.

We wainly use k-out-of-m codes as test data which can cover more control
faults. Therefore, the nurber of test patterns can be reduced.

Further work includes the enumeration of the control faults at the RTL
level for the generation of tests for covering all possible control faults

in a microprocessor.
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Vi. TESTING CONTROL FAULTS

During the verification of the correctness of write and read sequences,
we are only concerned with certain transfer operations (not all RTL operations)
in the kernel instructions. Therefore, when we test instruct;on decoding and
other contrel faults, we need to test all instructions included in the kernel,

Procedure 3. Testing instruction decoding and other control faults

For each instruction, do the following steps,
1. 1Initialize register state using any particular initisl values
(test data).

2, Execute the instruction instruction-under test.

3. Read register state.

Note that we should first try to use three sets of data values a, b and ¢
at Step 1.

Generally we need several tests for each instruction to detect the
instruction decoding and other control.faults., Obviously, the lower bound
of the number of tests using Procedure 3 for each instruction is two, This
is because any kind of microprocessors has several pairs of conditional branch
instructions btased on two different values for the same condition source.
Therefore, when any instruction is under test, in order tc detect an unexpected
branch instruction due to a fault, we need at least two test pattermns.

The upper bound on the test for each inmstruction is dependent upon the
microprocessor-under-test. We can roughly estimate the order of tests for
detecting instruction decoding faults. We consider ﬂI instructions to be
tested, assume that each imstruction corresponds to an operation, class T or
class A, used for distinguishing instructions from each other. Let n and

IT

n, denote the number of instructions which have operations class T and
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+n_..

class A respectively, 1i.e. n, - nIT IA

A, Testing instruction class T

1. The case of Theorem 1

Since for some condition branch instructions, their operations belong to
class T, and they are condition transfer operations. In order to detect this
unexpected operation T', two tests, in which test data are couplement to each
other, are sufficient.

2. The case of Theorem 2

First of all, we use three sets of initial values a, b and ¢ for covering
the requirements QTAl and QTA3. In crder to satisfy QTA2 and QTA4, we can
modify a, b and ¢ separately as new test data. As we have discussed in
Section V, i1f the instruction-under-test has a transfer operation D«S, we can
change VS in original data a, b and ¢ to VD, then QTA2 becomes QTA3 which can
be satisfied. Similarly, we can change VS to 1 (or 0) to satisfy QTA4. Here
we need nine tests altogether. Thus, the order of the number of tests for
testing instruction class T ic O(nIT).

B. Testiqgg}nétruction class A

1. The case of Theorem 3

Test data a, b and ¢ can cover QAT1 and QAT3., Similarly, in order to
satisfy QAT2, QAT4, QAT5 and QAT6, we can modify a, b and ¢ in turn, First,
we change VS' and VD' to VD for covering QAT2 and QAT4 respectively. These
changes are done for each register, so it needs 3n tests, where n is the nurber
of registers. Then we change VS' to a particular vglue for covering QATS5 and
QAT6 separately. It needs 6n tests. So the total nurber of tests for each
instruction in this class will be 9nt+3,

2. The case of Theorem 4

We need three tests using 8, b and ¢ for covering QAAl and QAA2,
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each unexpected operation A'. So the number of tests for each instruction in
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this class will be 3 + 5 (nIA =-1) =5 n. -2,

Therefore, the order of the nurber of tests for testing instruction class 4

is 0 (n-nIA +'n§A).
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VII. CONCLUSION

In this paper, we presented three test procedurcs to verify the write

o

"

X and read sequences and to test control faults at the RTL level.

{:‘ A control fault model is defined at the RTL level instead of the

D instruction level. This allows us to model the fault more accurately.

5; Based on the coutrol fault modiél, we consider the write and read

A

o register sequence functions as the kernel of a microprocessor independent of
- microprocessors. The similarity between the kernel of a microprocessor and a
::i sequential machine allows us to obtain the checking sequences to verify the
,;i kernel. Therefore, testing of microprocessors can be simplified.

}?: We mainly use k-out-of-m codes as test data which can cover more comntrol
R

E; faults. Therefore, the nurber of test patterns can be reduced.

o Further work includes the enumeration of the control faults at the RTL
i: level for the generation of tests for covering all possible control faults
-:\

o in a microprocessor.

AR

- ACKNOWLEDGEMENT

’%: The authors thank Dr. K.K. Saluja for his helpful comments and

e suggestions on this paper.

L“i

;:i

'\.:.

N

Y v

o

A

A

Ny

<7

7

™

o

bt s ]

......

.




At iae " A Eag et SR o aar ARAPAI™ aadt ol At e~ g M ae gl e e =0 intdia i t dian 4 hamdtn® . Sk Sekt s Sk -tk ‘2o ‘Aol fodh “ Bady ek Thail ' Bah 8 B AN 9

ATt N

“C

'\

0

1)
[2)

[3]

(4]

[5]
[6]
[7]
[8]
19]

{10]

[11]
[12]

(13]

& 'r\'..-J.ﬂ',

P UR e L T TR R ET

27

REFERENCES

A.C.L, Chiang and R. McCaskill, "Two New Approaches Simplify Testing of
Microprocessors', Electronics, 22 Jan. 1976, p. 100,

S.M. Thatte and J.A. Abraham, "Methcdology for Functional Level Testing
of Microprocessors", 8th International Symposiun on Fault-Tclerant
Computing, Tculouse, France, June 1978, pp. 90-95.

S.M. Thatte and J.A. Abraham, "Test Generation for Microprocescors",
IEEE Trans., on Computers, C-29, No., 6, Junme 1980, pp. 429-441,

S.M. Thatte, "Test Generation for Microprocessors', Coordinated Science
Laboratory Report R~842, University of Illinois at Urbana-Champaign,
May 1979.

J.A. Abraham and S.M. Thatte, "Fault Coverage of Testing Program for a
Microprocessor", 1979 Test Conference, Oct. 1979, pp. 18-22,

J.A. Abraham and K.P. Parker, “Practical Microprocessor Testing: Open and
Closed Loop Approaches", IEEE Ccmpcon, Spring 1981, pp. 308-311,

Y. Min and S.Y.E. fu, "Testing Functional Faults in VLSI", 19th Design
Automation Conference, Loc Vegas, Neveda, 1982, pp. 384-392.

K.K. Saluja, L. Shen and S.Y.P. Su, "A Simplified Algorithm for Testing
Microprocessors", 1983 Test Conference, Oct. 1983, pp. 668-675.

C. Robach and G. Saucier, "Microprocessor Punctional Testing", 1980
Test Conference, Nov. 1980, pp. 433-443,

M.A. Annaratone_and M.G. Sami, "Ar Approach to Functional Testing of
Microprocessors', 12th Internatiorzl Svrposium on Fault-Tolerant Corputing,
Santa Monica, CA, June 1982, pp. 158-164.

B. Courtois, "Functional Testing of the Control Section of Integrated
Processing Units", RR No. 203, IMAG, Univ, of Grenoble, France, May 1980.

F.C. Hennie, Finite-State Models for Legical Mackines, Jokn Wiley & Sons,
Inc., NY, 1968,

A.D. Friedman and D. Menon, Fault Detection in Digital Circuits, Prentice-
Hall, NJ, 1971,

PP a ;- uuuuuu FRT N . T AP O CR Il WL N T PR A BT
s ‘QP'F"‘(Q-’ . \ \..(‘ \-.4~.-“' e, 4‘ 4, .I'. e y ..'\" r-. ' '.‘-‘ﬂ'/'] A

AR |




AR N i e X M PSRN A A P G gr 10 Bt B G Soda e S G At ey lan i T g™ M A ML DA I B B Dyl T S S A P O e S AP I, SET S

i Rty ARV
- |
.
3
*
>
T T e e v
7 "“5 6
> -

|

. “ N e e P . PRI 5 _\Ns:r ~ gt ““'T .

et s m,
)

)

W RTTYTY
L)

v -_v.:.._'\




